
Vet: Identifying and Avoiding
UI Exploration Tarpits
Wenyu Wang, Wei Yang, Tianyin Xu, Tao Xie

University of Illinois Urbana-Champaign, USA
University of Texas at Dallas, USA

Peking University, China

Toward Understanding UI Testing Effectiveness

Tools may get stuck with a few functionalities for a long time

Exploration Tarpits

1

Action(s)
(screen tap, key press, …)

Screen contents, device status, …

Test
device

Test
tool

Effectiveness
report

code coverage
of crashes

Why?

Low(er)

Motivating Example A: Logging Out

Ape does not
understand the
consequences of

logging out

2

2 mins 58 mins

State-of-the-art tool Ape[1] on app OneNote

OneNote requires logging in to
access main functionalities
Manually log in before testing starts

1

Ape logs out soon
after testing starts2

Ape has to explore pre-login
functionalities for most of testing time3

1 2 3Test progress

[1] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su.
Practical GUI Testing of Android Applications via Model Abstraction and Refinement (ICSE 2019)

Motivating Example B: Obscure Escape

Monkey’s
exploration strategy

does not fit the
specific UI design

3

22 mins

State-of-the-practice tool Monkey on app Nike Runner Club

Monkey starts exploring a
special app functionality1

Escaping the functionality
requires a specific input
sequence (Back + OK)

Must start over if missed

2

Very difficult for Monkey
to escape the functionality
Monkey has no understanding
of on-screen contents

3

1 3 2

Monkey will get trapped again4

4Test progress

Back

Addressing UI Exploration Tarpits

🤔Manually involve domain knowledge?
😢Need to know tarpits in advance
😢Barely adaptive (apps, tools, environment, …)

🤔Monitor & Recover[1]?
😢Recovery can be non-trivial (external states)

😢Tarpits still happen (before recovery kicks in)

Learn from history?
👍Prevent / quickly escape from tarpits
👍Achievable with automated techniques
👍Provide human testers with insights

4
[1] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury.

Time-travel Testing of Android Apps (ICSE 2020)

Identifying Tarpits with Pattern Matching

5
Exploration Space Partition Excessive Local Exploration

2

3

1
1

2
3

X

Addressing UI Exploration Tarpits with Vet

6

Stage I: Trace Collection

App Under
Test

UI Testing
Tool

Traces Vet
Detection
Algorithms

Toller
[1]

+

UI & Action Recording

Exploration
Tarpit

Regions

Stage II: Analysis

Android Framework

Identification
Collect & analyze test history
to learn about exploration
tarpits for a given (tool, app)

1

Ultra-low overhead & tool-agnostic
Works with large industrial apps

Reduce pattern matching to
fitness value optimization

[1] Wenyu Wang, Wing Lam, and Tao Xie.
An Infrastructure Approach to Improving Effectiveness of Android UI Testing Tools (ISSTA 2021)

7

Stage I: Trace Collection

App Under
Test

UI Testing
Tool

Traces Vet
Detection
Algorithms

Toller+

UI & Action Recording

Exploration
Tarpit

Regions

Stage II: Analysis

Stage III: Enhanced Exploration

Avoidable
Actions &
Screens

Android Framework

+

UI Monitoring & Manipulation

Android Framework

Toller

Avoidance
Monitor subsequent test runs to
prevent entering or assist
escaping from exploration tarpits

2Identification
Collect & analyze test history
to learn about exploration
tarpits for a given (tool, app)

1

Ultra-low overhead & tool-agnostic
Works with large industrial apps

Reduce pattern matching to
fitness value optimization

Addressing UI Exploration Tarpits with Vet

Low overhead & tool-agnostic
Works with large industrial apps

Evaluation
• 16 popular industrial apps, 3 state-of-the-art/practice tools

• 3 one-hour traces per (tool, app), 144 in total.
• 131 reported regions, each spanning 10~59 minutes.

• RQ1: How effectively can Vet help reveal Android UI testing tool issues with
the identified exploration tarpit regions?
• Manual inspection: 96 regions with identified issues of various categories.

• RQ2: What is the extent of effectiveness improvement of Android UI testing
tools through automatic enhancement by Vet?
• Code coverage: cumulative # of distinct methods averaged across apps, +4.4% ~ +15.3%.
• Crash-triggering capability: # of distinct crashes accumulated across apps, 1.9x ~ 2.1x.

• RQ3: How likely do Vet algorithms miss tool issues in their identified
exploration tarpit regions?
• Minor. Please see paper[1] for details.

[1] https://wenyu.io/pub/fse21-vet.pdf

8

This work is partially supported by 3M, UT Dallas, NSF
(CNS-1564274, SHF-1816615, CNS-1956007, CCF-2029049),
Facebook Research, Microsoft Azure, and Google Cloud.

